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Abstract

An asymptotic analysis of the system of Navier–Stokes equations for describing the flow which arises from the subsonic free
stream in the neighbourhood of the vertex of a convex corner with curvilinear generatrices is presented for Reynolds numbers
approaching infinity. It is assumed that, in limiting non-viscous flow, the subsonic free stream reaches the velocity of sound at the
vertex of the corner and, in the first approximation, is described by the Vaglio–Laurin solution. It is shown that the flow can have a
different form depending on the value of the pressure gradient, which is formed in the neighbourhood of the corner point. However,
irrespective of the steady form of the flow, as a result of the interaction of the Vaglio–Laurin flow with the boundary layer, the latter
induces perturbations in the outer flow, which “rounds off” the vertex of the corner when there is a transonic flow around it.
© 2007 Elsevier Ltd. All rights reserved.

1. Formulation of the problem

The solution of the problem of the local interaction of the boundary layer with outer potential flow in the subsonic
neighbourhood of the vertex of a convex corner, formed by a corner profile will be sought in the form of perturbations
to the values of the components of the velocity vector at the corner point. We will take as the small parameters the
upstream distance from the vertex of the corner and the inverse of the Reynolds number Re, calculated for the critical
values of the parameters in the flow. We will assume that, in the limit as Re → ∞ in a first approximation one obtains
Vaglio-Laurin flow,1 which is formed by a singularity generated by the corner profile. In this case, the boundary
conditions in the problem of the flow around the profile with a corner point affect the flow in a small neighbourhood
of this point in the following approximations. The interaction of the boundary layer with the outer flow is due to a
favourable pressure gradient, which is induced by the Vaglio-Laurin flow. As one approaches the corner point this
gradient increases without limit in the form of a power law2–4 with a coefficient −3 �d�/5 (� is the ratio of the specific
heat capacities and d� is a certain constant). Below we will show that the form of the flow in the neighbourhood of the
corner point is determined by the value of d�, which depends on the boundary conditions outside the neighbourhood
of the corner point considered and can only be obtained from the solution of the problem as a whole.

An example of the fact that transonic flow with rarefaction wave due to the corner profile is formed precisely by
the boundary conditions and not the singularity, generated by this corner point, is well known.5 We take half of a
plane Laval nozzle and, at the point coinciding with the centre of the nozzle, we produce a discontinuity of the line of
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symmetry in such a way that a convex corner is obtained. The flow in the channel produced in the neighbourhood of
the vertex of the corner differs considerably from Vaglio-Laurin flow, although it also contains a rarefaction wave.

A similar situation also arises in the flow of a viscous incompressible fluid in front of the point of convergence of a
free streamline with the surface of a smooth body or a corner point of its generatrix.6 The structure of such flow was
investigated previously in Refs 7,8. The pressure gradient here also increases without limit in accordance with a power
law (but a different one) with a coefficient which depends on the constant d�. If d� � 1, the boundary layer in front
of the corner point in the first approximation remains linear (Blasius),9–11 exactly the same as in the free stream. If
d� = O(1), then, due to the action of the pressure gradient its own boundary layer is generated with an Ackerberg-type
velocity profile.4,6,11,12

Experiments show,13,14 that viscosity plays a considerable role in the formation of the rarefaction wave in transonic
flow in the neighbourhood of a corner point. Thanks to the boundary layer the rarefaction waves ceases to be centred
and does not issue exactly from the corner point.

2. Outer potential flow

Consider the transonic flow of a perfect gas in the neighbourhood of the corner point of a profile (the point O),
obtained as a result of the intersection of two smooth curves AO and OD, where the tangents to them at the point O
form a convex corner. We will introduce a Cartesian system of coordinates xOy, the x axis of which coincides with
the tangent to the curve AO at the point O. We will use the following notation: � is the velocity potential, u and v

are its components, p is the pressure, � is the density, T is the temperature, a is the velocity of sound and � is the
stream function. The thermodynamic variables are related by the equation of state of a perfect gas. We will take as the
characteristic quantities for all the above parameters their critical values (denoted by an asterisk). Below, all the flow
parameters and independent variables are assumed to be dimensionless and are denoted in the previous way.

It is assumed that the irrotational and subsonic free stream along the curve AO reaches the velocity of sound at the
point O. In a certain neighbourhood of this point the value of the velocity can be assumed to be a small perturbation
with respect to the critical velocity of sound. We will introduce the dimensionless potential of the perturbed velocity
such that � = � − x, |u − 1| � 1. In dimensionless variables the gas dynamics equations, describing the transonic flow
being considered, reduces to the inhomogeneous Karman equation for the potential of the perturbed velocity

(2.1)

Karman’s equation allows of a class of self-similar solutions15

(2.2)

The function f0(�) satisfies the ordinary differential equation16,17

(2.3)

The solution of Eq. (2.1) can be represented in the form

(2.4)

One part of the superscripts and subscripts pk = 3n − 2 + 2(n − 1)k appears in Eq. (2.4) due to the non-linearity of
Eq. (2.1) and the bending of the generatrix AO, while the other part is due to the eigenfunctions.

Suppose the equation of the curve AO has the form

y = −χ(n) − (−x)4−3/n + · · ·, x < 0, χ(n) > 0

The solution of the problem of the flow around a corner point, formed by the curves AO and OD, will be sought, in
the first approximation, in the class of self-similar solutions of Karman’s equation (2.2). It is required that the solution
of Eq. (2.3) should satisfy the impermeability condition on AO and convert into a Prandtl - Mayer type solution in the
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neighbourhood of the point O when x > 0 and y → 0 (in a centred rarefaction wave17). When n = 5/4 we have �(5/4) = 0.
In this case the curve AO becomes a straight line and one obtains Vaglio-Laurin flow.2,3 When n ∈ (5/4,5/3) one also
obtains flow with wave rarefaction around the corner point, which we will call Vaglio-Laurin type flow,18 but in this
case χ(n) �= 0. The parametric representation of the solution of Eq. (2.3) when n = 5/4 has the form16

(2.5)

where d is a scaling constant (also called the form parameter).19 This constant depends on the flow conditions outside
the neighbourhood of the corner point and can be obtained using the integral law of conservation or from the solution
of the problem as a whole. Solution (2.5) shows that the flow considered, in a certain neighbourhood of the vertex of
the corner, is formed in a first approximation, exclusively by the singularity formed by the corner around which the
flow occurs.

To simplify further calculations we will put d = 3−3/85−1/4β−7/8d
5/8
ε . The arbitrary constant d� can take both

values of the order of unity and values d� � 1.
The solution of Eq. (2.1) for n = 5/4 is given by expansion (2.4), while the functions fpk

(ξ) satisfy the equations

(2.6)

Changing to the variable t = t(�) and substituting fpk
= (t − 1)−pk/2hpk

(t) we convert Eq. (2.6) to an inhomogeneous
hypergeometric equation.17 The general solution of the corresponding homogeneous equation has the form

(2.7)

where F = F(·;·;·;t) is the hypergeometric function.
The fundamental solution, related to the constant A(s)

pk
, ensures that the impermeability condition is satisfied. We

will call it the left-symmetrical solution. We will call the second fundamental solution the left-antisymmetric solution.
Analytic continuation of the solution (2.7) into the region t → ∞ gives

(2.8)

The perturbed velocity potential ϕ0
pk

, corresponding to solutions (2.7) and (2.8), when x > 0, y → 0, has the form

ϕ0
pk

= D(p)
pk

y(8pk+1)/9z4(pk−1)/9 + D(w)
pk

z4pk + · · ·, z = x/y

The solution f 0
pk

as � → +∞ will be called a Prandtl–Mayer type solution if D(w)
pk

= 0 and a W-type solution if

D
(p)
pk = 0. If the left-symmetric solution converts to a Prandtl–Mayer type solution as � → +∞, we will say that it

belongs to the class (S → P), and if it converts into a W-type solution we will say it belongs to the class (S → W). We
define classes for the antisymmetric solution (A → P) and (A → W) similarly.
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Using the properties of the gamma function, we obtain from relations (2.8)

(2.9)

Part of the spectrum of (2.9) when pk → 7/4 was found when investigating the flow of a perfect gas over a corner point
in Ref. 17. Part of the spectrum when pk < 7/4 corresponds to the “inner” solutions, which describe, in particular, slight
“rounding off” of the vertex of the corner. The solutions fpk

∈ (S → P) contain arbitrary constants, which reflects the
local nature of the problem considered.

We will indicate the asymptotic behaviour of solution (2.4) when y → 0, x < 0 and x > 0 respectively

(2.10)

3. Transonic flow over a corner point by a viscous heat-conducting gas

From formula (2.10) we have

(3.1)

The quantity dp/dx → −∞ when x → 0. We will investigate the interaction of an infinitely high pressure gradient (3.1)
with a boundary layer according to well-known ideas.7,9,20,21

We will assume that the surface having the corner point is formally insulated, the coefficient of viscosity and the
thermal conductivity are proportional to the temperature, and the Prandtl number Pr = 1. With these conditions the
system of equations of the boundary layer possesses an integral, obtained for the first time by Buseman22,

u2

2
+ T

γ − 1
= 1

(γ − 1)R0

Under the action of an infinitely high pressure gradient (3.1), the flow region in the boundary layer upstream the
corner point can be divided into two subregions.7,12 In the viscous layer close to the wall the flow is mainly produced
by the action of viscous stresses; due to the smallness of the velocities and the absence of high temperature gradients
the flow, in the first approximation, will be uncompressed. In the bulk of the boundary layer the flow, in the first
approximation, is vortex flow, inviscid and described by Euler’s equations. The nature of the interaction depends on
the coefficient d�, the value of which is formed by the problem as a whole. For small values d� � 1 in the boundary
layer in the first approximation the linear “Blasius” profile of the longitudinal velocity in the lower viscous sublayer
is preserved. When d� = O(1) in the neighbourhood of the corner point its non-linear velocity profile is formed.4 The
description of the form of the flow as a function of the value of d� in the case of an incompressible fluid is well known.6

Below, for convenience of the calculations, we put d� = �d0 in formula (3.1), where d0 = O(1), � ∈ (0,1].

4. Interaction of the boundary layer with Vaglio-Laurin flow in the case when d� � 1

We will assume that � � 1, while the velocity profile of the boundary layer in the first approximation is linear with
a coefficient of proportionality 	.8 In the lower viscous sublayer the solution of the boundary-layer equations for the
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stream function � will be sought in the form

(4.1)

Here R0 is the value of the density at the point O while Y is the coordinate of the boundary layer in the transverse
direction.

To determine F0(
), the following linear equation is obtained

(4.2)

From the solution of Eq. (4.2) it is required that

Φ(0) = Φ′(0) = 0

while when � → ∞ it should not contain exponentially increasing terms. The successive substitutions

Φ = ζf,
df

dζ
= ζ−2g(ζ), σ = 1

9
ζ3

reduce Eq. (4.2) to a degenerate hypergeometric equation10

σg′′ +
(

1

3
− σ

)
g′ + 2

5
g = −1

Its solution, which satisfies the boundary conditions, has the form

(4.3)

where �(·,·,�) is the Tricomi function. From (4.3) we obtain

(4.4)

The surface friction τw, calculated using solution (4.3), has the form

(4.5)

In the bulk of the boundary layer, according to expansions (4.4), we will seek a solution in the form

(4.6)
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The functions U(Y) and u10(Y) are arbitrary, while u1i(Y), V1i(Y), ρ1i(Y) (i ≥ 1) satisfy ordinary differential equations,
as a result of the solution of which we obtain

(4.7)

Expansions (4.6) are matched with the expansions in the viscous sublayer; the details of the matching are omitted.
As a result of the matching, we obtain

C11 = 2

75
R

−1/3
0 d0λ

−5/3D1, C12 = 2

5
d0

∞∫
0

[R−1U−2 − 1 − (λY )−2R−1
0 ]dY

If we require that [U(Y) → 1, U′(Y) → ∞] when Y → ∞, we obtain from expansions (4.6) and relations (4.7)

(4.8)

Hence, as a result of the action of an infinitely high pressure gradient (3.1) on the boundary layer, the latter induces
perturbations (4.8) in the outer potential flow. The first term in the third formula of (4.8) is due to displacement thickness
of the boundary layer, while the second term is due to the pressure. Expansion (4.8) has meaning if the second term
is considerably less than the first. This condition leads to the estimate (−x) � 	−5. On the other hand, it follows from
relation (4.5) that λ−5d

15/4
ε � (−x). Combining both estimates, we obtain that the expansion constructed makes sense

if

(4.9)

since d� � 1, x < 0.
The solution in the outer potential region, induced by the perturbed boundary layer, will be sought in the form

(4.10)

We will consider the solution of the problem in the first approximation. The number pk = −1/6, as can be seen from
(2.9), is not spectral. The function f−1/6(�) has the form

f−1/6(ξ) = D
(S)
−1/6(t − 1)1/12F

(
5

18
,

1

3
;

1

2
; 1 − t

)
+ D

(A)
−1/6(t − 1)7/12F

(
5

6
,

7

9
;

3

2
; 1 − t

)

Matching expansions (4.8) and (4.10), we obtain

D
(A)
−1/6 = 2 · 3−19/125−5/6β7/4R

−1/3
0 D1λ

−5/3d5/12
ε
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Analytic continuation of f−1/6(�) into the region � → ∞, x > 0, y → 0 is given by formula (2.8). If we require that a
solution of the Prandtl–Mayer centred rarefaction wave type should be obtained, it is necessary to put

(4.11)

Expansion inside the boundary layer and in the outer potential region must be valid for values of the variable x of
one order. A comparison of expansions (4.11) and (4.5) shows that this condition is satisfied if the parameters 	, d�

and Re are connected by the relation

(4.12)

The relation between the parameters 	, d� and Re was obtained earlier6 for the case of the flow of an incompressible
fluid over a corner point.

In the next approximation it is necessary to take into account the effect of the second term in the square brackets in
(4.10) (with index p2 = 1/4), which belongs to the spectral set (2.9). We obtain that one of the fundamental solutions
belongs to the class (A → W), and other belongs to the class (S → P). The general solution has the form

(4.13)

The second term in solution (4.13) is due to the effect of the perturbed boundary layer, and when � → ∞ (t → ∞)
it converts into a W type solution, which describes the flow around a curved surface.

Matching with expansion (4.8), generally speaking, determines the non-zero constant

D
(A)
1/4 = 3−3/8 · 53/4β9/8C12d

5/8
ε

Hence, the effect of viscosity manifests itself, in particular, in that the boundary layer necessarily “rounds off” the
corner over which flow occurs. Since the fundamental solutions, which occur in the general solution (4.13), correspond
to the classes (A → W) and (S → P), the constant D

(S)
1/4 remains undetermined. The indeterminant form of f

(S)
1/4 is a

consequence of the locality of the solution of the problem. When x > 0, y → 0 we have

(4.14)

The behaviour of the potential �1/4 described above denotes that if the flow is considered in two approximations,
then for expansions (4.10) one cannot establish the condition for a transition to a Prandtl–Mayer type solution when
x > 0, y → 0, since, generally speaking, the constant D

(W)
1/4 �= 0 in Eq. (4.14).

5. The interaction of the boundary layer with the Vaglio-Laurin flow when d� = O(1)

We will consider another type of flow in the boundary layer, assuming that d� = O(1). We will take into account
that, in this case, due to the action of the infinite pressure gradient in the boundary layer an Ackerberg type velocity
profile,4,11 is obtained, which produces a non-linear longitudinal-velocity profile in the boundary layer when y → 0
(x → 0−).

In a thin layer near the wall Y∼(−x)2/5 the solution will be sought in the form4,11

(5.1)
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The function F(
) satisfies the equation

(5.2)

The transformation

η = 51/2R
−3/4
0 (2dε)−1/4ζ, F (η) = 51/2R

−5/4
0 (2dε)1/4Φ(ζ)

reduces Eq. (5.2) to canonical form

(5.3)

It is required to obtain a solution of Eq. (5.3), which satisfies the condition

Φ = Φ′ = 0 for ζ(0)

and which, when � → ∞, has the asymptotic behaviour

Φ(ζ) = b0ζ
3/2 + b00ζ

1/2 ln ζ + b0ζ
1/2 + · · ·, b00 = −(3b0)−1, F = B0η

3/2 + B00η
1/2 ln η + B01η

1/2 + · · ·
It was proved in Ref. 23 that the problem in question has a unique solution. The function �0 is found from the

Buseman integral22

ρ0 = γR0dε + γ − 1

2
R2

0F
2

The expansions of the flow parameters in the main part of the boundary layer will have the form

(5.4)

The functions ui, Vi, ρi (i = 0,1) satisfy ordinary differential equations. Matching expansions (5.1) and (5.4) when
Y → 0 gives4,11

U(Y ) = 3

2
B0Y

1/2 + · · ·, R(Y ) = R0 + 9

8
(γ − 1)R2

0B
2
0Y + · · ·

Hence, when d� = O(1), a non-linear Ackerberg type profile of the longitudinal component of the velocity is
generated.

Under the conditions when

U(Y ) → 1, R(Y ) → 1 (U ′(Y ) → 0, R′(Y ) → 0) as Y → ∞
expansions (5.4) for u, � and p are automatically matched with the expansions in the inner potential region. For the
components of the velocity V we obtain

(5.5)

Hence it follows that, as a result of the action of the pressure gradient (3.1) on the boundary layer, the latter induces
additional perturbations, proportional to Re−1/2 in the outer potential flow. We will seek the expansion of the potential
of the perturbed velocity in the form

(5.6)
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The functions χ1/4, f1/4 satisfy the following equations (the symbol L corresponds to the left part of Eq. (2.6))

L
⌊
χ1/4

⌋ = 0, L[f1/4] = 5

2
ξχ′

1/4 + 1

2
χ1/4

from which we have

(5.7)

It can be seen from conditions (2.9) that the solutions �1/4, f1/4 can be subdivided into the direct sum of two
fundamental solutions of the class (S → P) and (A → W). Because of this the constants B

(S)
1/4 and D

(S)
1/4 remain arbitrary

and can only be determined when solving the problem as a whole. We will assume that B
(S)
1/4 and D

(S)
1/4 are of the same

order as B
(A)
1/4 and D

(A)
1/4. The latter are expressed in terms of the constants A0 and A1 by matching expansions (5.5) and

(5.6):

A0 = 4 · 5−8/5β−3/5(3dε)3/5B
(A)
1/4, A1 = D

(A)
1/4

A comparison of the terms in expansion (5.6) with respect to order of magnitude gives the characteristic dimensions

x∗ = O
⌊
Re−5/12 ln 5/6Re

⌋
, y∗ = O[x∗4/5]

at which the expansions obtained in the subsonic region lose validity.
As a result of the interaction of the outer Vaglio-Laurin potential flow with the boundary layer the corner is “rounded

off” more strongly, which in the first approximation flow of the simple-wave type occurs. The strong rounding off of
the corner may be related, in particular, to the formation of a developed local separating bubble in a certain region
downstream the corner point.14

Note that in the supersonic region z = x/y = O(1), y → 0 the expansion of the total potential is sought as the solution
of Euler’s equations in the form11

(5.8)

The functions g0(z) and g1(z) were found previously in Refs 3 and 19. The first term in the braces describes a simple
wave and is due to “rounding off” of the vertex of the corner, while the second describes the centred rarefaction wave.
The functions P0(z) and P1(z) can be determined from the solutions of first-order ordinary differential equations. The
behaviour of the function W(z), like the behaviour of the functions P0(z) and P1(z), when z → 0, are determined from
the condition for expansions (5.6) and (5.8) to be matched. For the remaining values of z, as in the case when d� � 1,
the function W(z) is arbitrary.

Expansion (5.8) ceases to be valid when x* = O(Re−3/10), y* = O(Re−3/10). These expansions are characteristic for
transonic flows of a heat-conducting gas.24

The solutions constructed for d� = O(1) and for d� � 1 show that the solution generated in the neighbourhood of
the corner point depends on the problem considered. A similar situation is observed in the flow of an incompressible
fluid over a corner point.6 The locality of the problem considered above also manifests itself in the fact that unknown
constants and arbitrary functions arise in the solutions constructed. The occurrence of an arbitrary function W(z), which
describes a simple rarefaction wave, is due to the fact that in the supersonic neighbourhood of the corner the flow may
acquire a different form depending on the problem considered. In particular, the form of the flow in the supersonic
region depends very much on the shape of the generatrix of the corner OD.
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